Series

VENTS VUT 160 PB EC VENTS VUT 350 PB EC

Air handling unit in heatand sound-insulated casing. Air capacity up to 410 m³/h. Heat recovery efficiency up to 94 %.

Description

The air-handling units are the fully featured ventilation units with heat recovery for air filtration, fresh air supply and stale air extract. The heat contained in the extract air is recuperated in the high-efficient plate, counter flow heat exchanger to warm up supply air. The units are designed for energy efficient ventilation of cottages and flats and are compatible with round air ducts.

Casing

Made of high-quality aluzink steel, internally filled with 40 mm mineral wool heat- and soundinsulating layer.

Filter

Supply and exhaust airflows are purified through panel filters with filtering class G4. A replaceable filter with filtering class F7 is optionally available.

Fans

High efficient electronically commutated motors with external motor and impeller with backward curved blades. Such motors are the most state-of-theart energy saving solution. EC motors are featured with high performance and total speed controllable range. High efficiency reaching 90% is the premium advantage of the electronically commutated motors.

Heat exchangers

Counter-flow aluminum heat exchangers with high heat recovery efficiency. The drain pan under the heat exchanger block ensures condensate removal in both horizontal and vertical positions. In case of freezing danger determined by the temperature sensor, the supply fan is turned off for the period required for the heat exchanger defrosting. The heat exchanger is easily removed for cleaning.

Bypass

Units are equipped with a 100 % bypass, which can be opened if there is a need to cool down the ventilated area with cool intake air

■ Control and automation

The unit includes integrated automation. The heat exchanger freezing protection operates as follows: In case of freezing danger determined by the temperature sensor the supply fan is turned off to let extract air warm up the heat exchanger. After freezing danger is no longer imminent, the unit reverts to the standard operation mode. Delivery set includes a multifunctional control panel indication and a 10 m long signaling cable.

Sensor control panel (A14) VUT 160 PB EC A14 and VUT 350 PB EC A14 units are equipped with A14 sensor control panel with LED indication and following functions:

- > Speed selection: Off, Low, Medium or High;
- Manual opening and closing of the bypass damper;
- Filter clogging control by motor hours;
- ▶ Fault indication;
- ▶ Control according to the optional duct humidity sensor HV2 feedback or according to an optional external sensor with NO contacts:
- Ventilation system shutdown at signal from the fire

VUT 160 PB EC A14 and VUT 350 PB EC A14 units can be connected to a PC by means of a USB cable. Special software gives following possibilities:

- Software update of the unit:
- Adjusting of the Off, Low, Medium or High speed modes from 0 to 100 % for supply and exhaust fans separately;
- Adjustment of the humidity level and the speed activated by optional humidity sensor HV2;
- Adjustment of the speed activated by the optional external relay;
- Adjustment of the temperature of activation of freezing protection;
- Adjustment of filter maintenance timer;
- Monitoring of the maintenance timer, humidity level, external relay, and bypass;
- ▶ Error code indication.

PU SENS 01 control panel (A11)

VUT 160 PB EC A11 and VUT 350 PB EC A11 units are equipped with touch-screen LCD control panel PU SENS 01 with following functions:

- ▶ Turning unit on/off;
- ▶ Low-medium-high speed selection and adjustment from 0 up to 100% for supply and exhaust fans separately;

- Manual or automatic opening/closing of the bypass for summer ventilation;
- Week scheduled;
- Actuating external air dampers;
- Indication, adjustment and maintaining set room or supply air temperature;
- ▶ Control according to the optional duct humidity sensor HV1 feedback or according to the humidity sensor built-in the control panel;
- Filter clogging control by motor hours;
- Ventilation system shutdown at signal from the fire alarm system;
- ▶ Cooler connection possibility.

Mounting

Units can be mounted in two different ways:

- Suspended to the ceiling;
- ▶ Hanged in the wall with vertical position of flanges. Access for the unit servicing and filter maintenance on the bottom panel side.

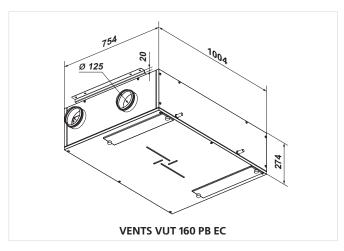
Designation key:

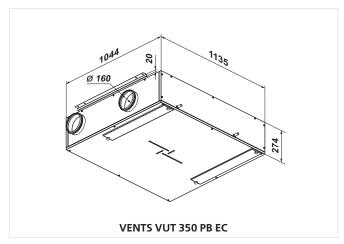
Series Rated air capacity [m³/h] Motor type Mounting type Control A11 - touch-screen LCD control panel **EC**- synchronous **VENTS** PU SENS 01; electronically 160; 350 P - ceiling suspended B – bypass VUT A14 - sensor control panel with commutated motor LED indication Accessories

sensor HV1

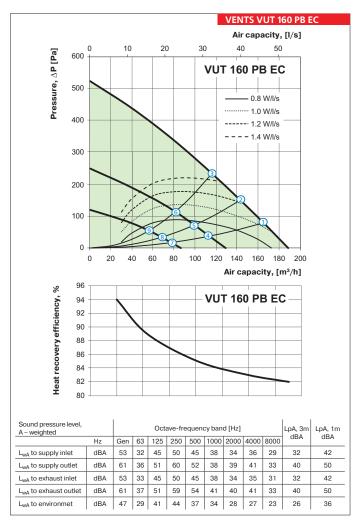
page 378 page 378 page 442 page 447 page 452 page 492 page 492

Technical data:

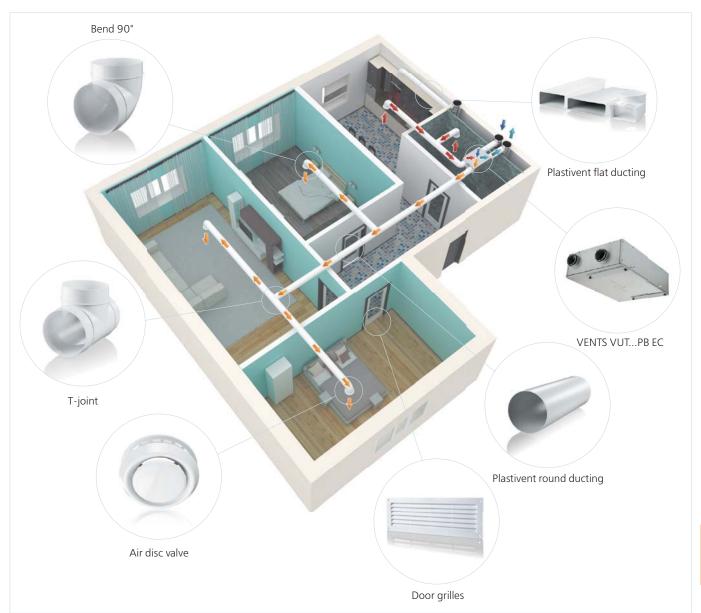

	VUT 160 PB EC	VUT 350 PB EC				
Voltage [V / Hz]	1~ 230					
Total unit power [W]	50	170				
Total unit current [A]	0.4	1.3				
Max. air capacity [m³/h]	190	410				
RPM [min ⁻¹]	3770	3200				
Sound pressure level at 3 m [dBA]	48	58				
Transported air temperature [°C]	from -25 °C up to +60					
Casing material	aluzinc					
Insulation	40 mm mineral wool					
Filter: extract / supply	G4 / G4 (F7*)					
Connected air duct diameter [mm]	Ø 125	Ø 160				
Weight [kg]	52	74				
Heat recovery efficiency	82 up to 94 %	80 up to 91 %				
Heat exchanger type	counter-flow					
SEC Class	A+	Α				
Heat exchanger material	aluminum					


^{*}modification

Air handling unit accessories:


Туре	G4 replaceable panel filter	F7 replaceable panel filter	Duct humidity sensor	Siphon kit
VUT 160 PB EC A14	SF VUT 160 PB EC G4	SF VUT 160 PB EC F7	HV2	
VUT 350 PB EC A14	SF VUT 350 PB EC G4	SF VUT 350 PB EC F7	ΠVZ	SH-32
VUT 160 PB EC A11	SF VUT 160 PB EC G4	SF VUT 160 PB EC F7	111/4	SH-32
VUT 350 PB EC A11	SF VUT 350 PB EC G4	SF VUT 350 PB EC F7	HV1	

Overall dimensions:


HEAT RECOVERY AIR HANDLING UNITS

									44.5			50 PB	
									Air	capa	acity,	[l/s]	
	=0.0	0	20		40		60	8	0	100)	120	
<u>a.</u>	700				-			VIII	35	n PF	3 EC		
Pressure, ∆P [Pa]								Ī		- 0.8		'	
re,	600									1.0			
SSE							\			- · 1.2	W/I/s		
P.	500									- 1.4	W/I/s		
							1		- · - ·	- 1.6			
	400				\-	. — :		3			W/l/s W/l/s		
				<i>\ .</i> ·	/		- 1	//	N I	1			
	300		/			-/-	-/-		1				
			11	1.		}	<u> </u>		, 2				
	200		13	-		-/-	}						
			1	J	/		/						
	100		\sim	1		\prec			4		1		
		_		38	0	-+					1:1		
	0	0 5	50	100	150	20	0 2	250	300	350	400	450	
			,,,	100	100	20	0 2	.00	000	000	400	700	
									Air ca	anaci	itv. Γr	n ³ /h1	
.0	92								Air ca	apaci	ity, [r	n³/h]	
% , %								1	-	-	ity, [r		
ency, %	90		\					1	-	-	1		
ficiency, %	90 88		\					1	-	-	1		
y efficiency, %	90 88 86		\					1	-	-	1		
very efficiency, %	90 88		\			_		1	-	-	1		
ecovery efficiency, %	90 88 86		\			\	_	1	-	-	1		
at recovery efficiency, %	90 88 86 84		\			_	_	1	-	-	1		
Heat recovery efficiency, %	90 88 86 84 82					_	_	1	-	-	1		
Heat recovery efficiency, %	90 88 86 84 82						_	1	-	-	1		
Heat recovery efficiency, %	90 88 86 84 82 80 78						_	VU	Г 35	-	1		I
	90 88 86 84 82 80 78		Gor	63			equenc	VUT	Γ 35	0 PE	ВЕС		n LpA, 1. dBA
Sound pressure A – weighted	90 88 86 84 82 80 78	Hz	Gen 60	63 46	125	250	equeno 500	VUT	d [Hz]	0 PE	8000	LpA, 3rdBA	dBA
Sound pressure A – weighted L _{wA} to supply in	90 88 86 84 82 80 78	Hz dBA dBA	Gen 60 63	63 46 52			equenc	VUT	Γ 35	0 PE	ВЕС	LpA, 3r	
Sound pressure A – weighted	90 88 86 84 82 80 78 e level,	dBA	60	46	125 54	250 58	500 50	VU 7 1000 1000 46	d (Hz)	0 PR	8000	LpA, 3r dBA 40	dBA 50
Sound pressure A – weighted L _{wA} to supply in L _{wA} to supply o	90 88 86 84 82 80 78 e level,	dBA dBA	60 63	46 52	125 54 58	250 58 60	equence 500 50 50 54	vu 7 1000 46 46	d (Hz) 2000 40 40	4000 40 41	8000 31 35	LpA, 3r dBA 40 43	50 53

Point	Total power of	of the unit, W	Total sound pressure level at 3 m (1 m), dBA			
	VUT 160 PB EC	VUT 350 PB EC	VUT 160 PB EC	VUT 350 PB EC		
1	49	169	26 (36)	34 (44)		
2	49	169	26 (36)	34 (44)		
3	48	169	25 (35)	33 (43)		
4	21	87	22 (32)	28 (38)		
5	21	86	22 (32)	28 (38)		
6	20	84	21 (31)	27 (37)		
7	8	20	19 (29)	22 (32)		
8	8	19	18 (28)	22 (32)		
9	8	19	18 (28)	21 (31)		

Application examples:

